Hope you have visited my first blog now we will start testing our code that is the model which we have trained is it working or not from this you will come to know.
![Image result for python and openCV](https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSaKtRbE-fJCQsqdYDicJWtpuu5cH1ex6MifKiJzdzB8xJDkgVn)
STEP 3 - Now open a new tab and copy this programme there and so that you can recognize the face is it user or anyone else.
STEP 4 - Before this install the NUMPY Lib.
Here is the link for #1(https://t.co/nn1Tfc1YUI)
KEEP IN MIND THAT THE CODE WHICH IS GIVEN COPY IT AS IT SHOWN EVEN SPACE TOO IF NOT THE CODE WILL NOT WORK
STEP 3 - Now open a new tab and copy this programme there and so that you can recognize the face is it user or anyone else.
STEP 4 - Before this install the NUMPY Lib.
Here is the link for #1(https://t.co/nn1Tfc1YUI)
import cv2 import numpy as np from os import listdir from os.path import isfile, join data_path = 'C:/python/open cv/faces/'onlyfiles = [f for f in listdir(data_path) if isfile(join(data_path,f))] Training_Data, Labels = [], [] for i, files in enumerate(onlyfiles): image_path = data_path + onlyfiles[i] images = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) Training_Data.append(np.asarray(images, dtype=np.uint8)) Labels.append(i) Labels = np.asarray(Labels, dtype=np.int32) model = cv2.face.LBPHFaceRecognizer_create() model.train(np.asarray(Training_Data), np.asarray(Labels)) print("Model Training Complete!!!!!") face_classifier = cv2.CascadeClassifier('C:/Users/rahul/PycharmProjects/open/venv/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml') def face_detector(img, size = 0.5): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_classifier.detectMultiScale(gray,1.3,5) if faces is(): return img,[] for(x,y,w,h) in faces: cv2.rectangle(img, (x,y),(x+w,y+h),(0,255,255),2) roi = img[y:y+h, x:x+w] roi = cv2.resize(roi, (200,200)) return img,roi cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() image, face = face_detector(frame) try: face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY) result = model.predict(face) if result[1] < 500: confidence = int(100*(1-(result[1])/300)) display_string = str(confidence)+'% Confidence it is user'
cv2.putText(image,display_string,(100,120), cv2.FONT_HERSHEY_COMPLEX,1,(250,120,255),2)
if confidence > 75: cv2.putText(image, "Unlocked", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2) cv2.imshow('Face Cropper', image) else: cv2.putText(image, "Locked", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2) cv2.imshow('Face Cropper', image) except: cv2.putText(image, "Face Not Found", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 0, 0), 2) cv2.imshow('Face Cropper', image) pass if cv2.waitKey(1)==13: break cap.release()cv2.destroyAllWindows()
KEEP IN MIND THAT THE CODE WHICH IS GIVEN COPY IT AS IT SHOWN EVEN SPACE TOO IF NOT THE CODE WILL NOT WORK